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ABSTRACT

We have made numerical calculations with a new nonlocal
fluid treatment of Coulomb collisional electron transport which
self-consistently accounts for the nonthermal high energy
electrons arising from the spatial transport of thermal
electrons whose range is not short compared with the temperature
scalelength. Heat fluxes associated with steep gradients are
reduced from classical while ahead of a temperature front there
is preheating which exceeds classical.
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The need for an efficient self-consistent treatment of high flux
electron transport in laser irradiated plasmas has been acute for
some time. Intense research has identified and resolved important
issues in the Coulomb collisional theory.l’2 It is now understood
that the failure of classical transport occurs when the
mean-free-path of the high energy heat-carrying electrons is not
much smaller than the temperature scalelength. This implles that
the transport fluxes are not locally determined. Indeed,
idealizations of systems of interest have been successfully
described by a fully multigroup (in energy) diffusion (in space)
treatment.2 This reduced Fokker-Planck theory accounts for the
nonthermal distribution induced at high energy by the transport
itself; this in turn acts to alter the transport from classical.
Heat fluxes associated with steep temperature gradients are reduced
from classical, while ahead of the temperature front there is
preheating which exceeds classical. This understanding has been
gained by analysis of state-of-the-art numerical calculations still
too inefficlent for application to more than a few prablems.

In practice ad hoc fluid schemes have been employed to treat
high flux electron transport. The most robust of these limits the
heat flux to a fraction, Ffl’ of its so called free streaming
value, Qfl = Ffln(T/m)llzT; however, this prescription is
unphysical in that it is pointwise local. Recently a new fluid
scheme possessing nonlocal phenomenology has been employed and
normalized against certain first principles calculations.3

Here we report numerical calculations with a nonlocal fluid
treatment of Coulomb collisional transport which self-consistently
accounts for the nonthermal high energy electrons arising from the
spatial transport of thermal electrons whose range is not short
compared to the temperature scalelength. The associated Fokker-
Planck calculation has been carried out analyticaily and permits the
first principles formulation of a nonlocal (in space) description of
the evolution of the plasma temperature. Our theory requires that
the number and energy of the nonthermal electrons be small but their
number and energy fluxes are not restricted and may dominate the
total fluxes. Indeed, we have recovered in detail the results of
previous fully multigroup diffusion laser absorption and heat



3
transport calculations.2 Our transport scheme is suitable for
implementation in one dimensional laser-plasma simulation codes and
is expected to be efficient enough for general utility.

The reduced Fokker-Planck equation which governs the electron
distibution in position and total energies:2
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Equation (1) neglects the hydrodynamics of the background ions.
The electron number and energy
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Electron-electron collisions, d/dtee, conserve both number and energy
of the species. The electrostatic potential is determined by the
requirement of quasineutrality, n = ZN. 1In the present application this
becomes the vanishing of the number flux, I'(e¢) = 0. The number and
energy fluxes I and @, are
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If de/dtee is dominant in Eq. (1) then the distribution takes
its local-thermodynamic-equilibrium form, the Maxwell-Boltzmann fo -
fug = (/21 T/m)>'?) exp[-(c + e#)/T). Employing fyg 10
Eqs. (3) ylelds classical transport wherein Q = - aT/dx; this
closes the fluid Eq. (2).

The transport itself upsets the MB distribution whenever the scale
length of interest, L, is not much longer than the stopping length,
ks = (2x90 16/3)1/2. This may be seen by estimating dFU/dt e (v/axc)f0

and comparing it with the spatial diffusion term ~ (vk90/6L )fO. Here
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Xc = (mv2)2/21re4n9.nl\ee is the energy loss mean-free-path.
On account of the strong energy dependence of ks the higher energy
electrons are most readily altered by the transport. Inspection of Eq.
(3) reveals that these higher energy electrons are the ones which carry
the fluxes and so must in turn be accounted for in calculating the
transport.

Thus motivated we write f_ ~ f . + &f and solve for &f at

0 MB
high energy where Eq. (1) becomes
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Here FMB is annihilated by d/dtee, and we have neglected the
thermalization of high energy electrons on the bulk as small by
Talndf/de¢ compared with the energy loss retained. Also the

temporal variation of the distribution and potential are assumed slow.
Equation (4) makes explicit that the source (possibly negative!) of
nonthermal electrons, &f, is the spatial transport of thermal

electrons, fMB'
We solve Eq. (4) in the limit ¢ > -e¢ so that mv2/2 ~ €
and find
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Here dt = dx/iS and we use X\ = k/(mvz)z. We have not yet taken account

of spatial boundary conditions. We have also passed a factor of ZU2

through d/dx in defining § and thus require that the ionization
state vary more slowly than the temperature.

Equation (5) shows that nonthermal electrons at § and ¢ have come
from all §' and all ¢' > ¢ by stopping transport. We observe that
fO of Eq. (5) 1s determined by the density and temperature of f
We shall neglect the small number and energy, 8n and &3nT/2, of
nonthermals in the fluid Egs. (2) so that the density and temperature of
the plasma become those of the MB distribution. Thus substitution of
fO of Eq. (5) into Eqgs. (3) closes the fluid Eqs. (2) and naturally
yields a nonlocal treatment of the transport.

MB*
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In Eqs. (3) we have energy integrals of afg/dx = (l/is) afy/9t; this
differentiation acts on the Gaussian kernel in Eq. (5) for fo. We
replace a/d% by -4/3%' and integrate by parts in §' to cast the
spatial derivative onto fMB/T. The electric field enters explicitly
upon differentiation of the exponential factor of fMB' It is
convenient to split the potential into local and nonlocal parts,
ed = e¢1 + e¢nl, where dedlL/d%t = (T/n) an/a% - (5/2) aT/ak.
Finally ¢ > -e¢ is exploited by letting -e¢ » 0 everywhere except
under differentiation by ¢'.

The resulting double energy integrals have been computed to obtain
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Here we have made the transformation dt'd/3%' = dx'a/ax'. The
nonlocal transport propagators P = I, J, K and L are functions only.
x dx“
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X ks

which is the number of stopping lengths from the source point x' to the
field point x at an energy equal to the source temperature.
The propagators have the follawing form
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For small 6 they fall off linearly, P(8) » P(0) + P'(0)6, while

for large 6 they fall off exponentially in 62/5, P(8) » 32

21752 87 expr-(5/4") 82/°]. 1The constants a, B,
P(0), P'(0), A, v and the propagator normalization integrals are shown
in Table I.

We have analysed two limiting temperature profiles which illuminate

the physics in play. First, in the limit of gradients much longer than
the stopping length. The nonlocal heat flux reduces to classical because



only x' near x contributes in the inézgrals of Eq. (6). We let
dx' - Tzisde and employ the propagator normalizations. Taking
ae¢nl/ax = 5 aT/3x from ' = 0 yields the classical resulti;2
ded/dx = (T/n) an/ax + (5/2) 3aT/ax and Q = 25.532 n (T/m)
Anp 3T/3x. Here A = % %0
Second our nonlocal heat flux 1s naturally self-limlting! For a
temperature step from Hot to Cold over a distance much shorter than
a stopping length we find; Ae¢nl - 3 AT and Q > 1.285 (i90/i€)1/2

(n/mt/2y (TH3’2 - 12’2y, Note that the temperature within

the transition integval does not enter here; the limit of our nonlocal
treatment is indeed nonlocal.

We have also solved the fluid Eqs. (2) numerically. Figure 1 shows
some results of illuminating a stationary plasma with a constant
intensity laser beam. To this end we have introduced a source xI in
the energy equation.a The calculation was terminated when the heat
flux into the overdense plasma equaled the absorbed laser flux so that
the coronal plasma had reached a quasisteady condition.

In Fig. 1 we note the signatures of the nonlocal transport are 1) a
hot absorption layer, 2) a steep temperature gradient separating the
laser heated plasma and conduction heated plasma, 3) a non-isothermal
corona and, 4) a preheat foot on the temperature profile. The reduced
absorption recorded in the table is associated with 1) since
K, @ T'3/2; this feature and 2) are typical of strongly flux
limited simulations required to reproduce results of laboratory
experiments. Here 1) and 2) are due to the stopping of electrons as they
transport from the laser heated plasma. The non-isothermal corona
Tesults from nonlocal transport from there towards the colder denser
plasma. This physics is also responsible for the preheat foot.

Figure 2 shows that including nonlinear reduction of the laser
opacity5 brings the absorbed energy, heat flux and temperature all into
agreement with previous direct solutions of Eq. (l).2 Indeed, at high
energy the underlying nonlocally determined distribution function, fo
of Eq. (5), 1s in agreement as well. In our transport treatment we have
neglected the effect of the nonthermal distribution induced at low energy
by laser heating.5 This heating is communicated to the high energy
transporting electrons via the temperature T; self collisions mediate

between laser heating at low energy and transport at high energy.
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The effect of the nonlocally determined electric field is displayed
in Fig. 2. The field acts to reduce the heat flow from that due to the
temperature gradient. The reduction is substantial and is not constant,
being both larger and smaller than in the classical limit. 1In
particular,less than classical reduction aoccurs in the preheat region
because only a relatively small electric field is requlred to establish
zero total current against the small current of high energy heat
transporting electrons.

We have checked that neglect of thermalization of high energy
electrons on the bulk electrons is justified.6 Only modest errors of
our nonlocal treatment are indicated.

Energy conservation in the laser heated plasma calculations requires
that there be no heat flux into the vacuum. This implies the condition
afo/ax = 0 at the boundary; this is straightforward but tedious to
implement as an (infinite) series of images. Provided the entire system
is many stopping lengths in extent it is sufficient to include a single
image plasma on the vacuum side of the fluid calculation. In our
calculations we extended the I' and Q integrations over this image
plasma to ensure that the fluxes vanished correctly at the boundary.
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Figure Captions

1. Nonlocal transport gives significantly different results from

classical in a calculation of a laser heated plasma; classical
absorption, K = 1.0.4

2. Previous fully multigroup diffusion transport results2 are
recovered by the nonlocal treatment when nonlinear reduction of the
laser opacitya'5 is introduced; here K ~ 0.7.

Table Caption

1. Coefficients for the nonlocal transport propagators described in the
text.
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